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SUMMARY 
Velocity varies rapidly near sheared boundaries. Therefore in many practical fluid problems it can be 
inefficient to solve discrete equations with velocity as the dependent variable. Conversely, shear stress varies 
slowly near sheared boundaries, suggesting that it may be well suited for use as the dependent variable in 
discrete equations. 

This paper describes a formulation of the internal mode equations for a three-dimensional hydrodynamic 
model using shear stress as the dependent variable. The resulting direct stress solution (DSS), coupled with 
a spatial discretization using linear finite elements, yields a system matrix that can be set up and solved 
with the efficiency of a banded matrix with bandwidth 8. If the eddy viscosity distribution is assumed to 
be piecewise linear over the depth (with an arbitrary number of time-varying segments), the recovery of 
velocity from stress can be easily accomplished in closed form, thereby avoiding any difficulty resulting 
from the logarithmic singularity in the velocity profile that occurs at a boundary. 

Results from tidal and wind-driven test cases with realistic boundary layers are used to demonstrate the 
accuracy and computational advantages of a DSS formulation versus a standard velocity-based for- 
mulation. 

KEY WORDS Three-dimensional circulation model Direct stress solution hternal mode solution velocity profik - 
Boundary layers Tidal flow Wind-driven flow Finite element method 

INTRODUCTION 

Most three-dimensional surface water circulation models are based on the turbulent Reynolds 
equations simplified using the hydrostatic pressure approximation. The form of the resulting 
conservation-of-momentum equations encourages the decomposition of the three-dimensional 
problem into coupled problems in the horizontal and vertical directions. The solutions to the 
horizontal and vertical problems are commonly referred to as 'external mode' and 'internal 
mode' solutions respectively. The external mode solution consists of the free surface elevation 
and can also include the depth-averaged velocity. These solutions are usually obtained by 
discretizing the horizontal problem on either a finite difference grid'-' or a finite element 
grid.*-" The primary result obtained from the internal mode solution is the vertical profile of 
velocity. Internal mode solutions have been obtained by discretizing the vertical problem using 
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finite difference  method^,'-^*^*^*' ' finite element methods*-'O and spectral method~.4.'.'~-'~ 
A common feature of virtually all three-dimensional models is that they use velocity as the 
dependent variable in the internal mode solution. (This approach will be called a velocity solution 
or VS.) 

Luettich and Westerink,' hereafter LW, proposed an alternative internal mode solution 
strategy in which shear stress was used as the dependent variable in the internal mode problem. 
(LW termed this a direct stress solution or DSS.) The rationale behind developing the DSS 
technique was that velocity varies rapidly near sheared boundaries. This behaviour is difficult 
to represent using discrete VS equations. Conversely, shear stress varies slowly near boundaries, 
suggesting that its variation can be efficiently reproduced by discrete equations. Thus for coastal 
and shelf applications in which the surface and bottom boundary layers occupy most or all of 
the water column, a DSS approach may be more efficient than a VS approach for obtaining 
the internal mode solution. 

The DSS internal mode equations presented by LW were formulated by subtracting the 
depth-averaged momentum equations from the three-dimensional momentum equations. A 
standard eddy viscosity hypothesis was used to relate shear stress and horizontal velocity: 

72 av 
Po az 
- =E, - - ,  

where 5, is the vertical shear stress vector, po is a reference density, E ,  is the vertical eddy 
viscosity, V is the horizontal velocity vector and z is the vertical co-ordinate direction. Equation 
(1) was inverted to give 

Integrating equation (2) and separating the total velocity into the depth-averaged component 
and the deviation over the vertical yielded an expression for the velocity deviation in terms of 
shear stress: 

where V is the velocity deviation (V' SE V - o), 0 is the depth-averaged velocity, V = v b  at the 
bottom and z = - h at the bottom. Equation (3) was then used to change the dependent variables 
in the internal mode equations from velocity deviations to shear stresses. The resulting equations 
were solved using a Galerkin-spectral discretization over the vertical with Legendre polynomials 
as expansion functions. 

There are two primary disadvantages with the DSS formulation of LW. First, the equation 
formulation and the Galerkin-spectral discretization using polynomial expansion functions 
result in a fully populated system matrix. In a time-stepping model the system matrix has to be 
set up, decomposed and solved every time step. This requires q N 3 )  operations per time step, 
where N is the number of degrees of freedom (in this case the number of polynomials) in the 
discretization. By comparison, efficient VS formulations result in banded system matrices 
(bandwidth 6)  that can be set up, decomposed and solved in O ( N )  operations per time step.9 
Therefore, while a DSS might require fewer degrees of freedom than a VS, the VS could still 
require less computational effort. The second problem is due to the integrals introduced into 
the DSS internal mode equations by equation (3). If E ,  is assumed to vary with distance from 



DlRECT STRESS SOLUTION OF 3D HYDRODYNAMICAL MODELS 297 

a sheared boundary (a physically realistic variation of E,),16-19 the quotient TJE, has a 
logarithmic singularity at  the boundary. Therefore a numerical evaluation of the integrals 
introduced by equation (3) is problematic. However, if both z, and E, have polynomial variations 
over the depth, all integrals can be evaluated in closed form. LW assumed that E, was linear 
over the depth, although this can easily be generalized by allowing E, to be a continuous, 
piecewise linear function of depth. Unfortunately, owing to the large number of terms that occur 
in the closed form integration, round-off errors overwhelm the correct solution when more than 
five or six Legendre polynomials are used in the discretization together with more than two or 
three E, segments. 

We note that if the DSS equation formulation of LW is used with a Galerkin-finite element 
discretization, the resulting system matrix is nearly triangular and requires O(N2) operations to 
set up and solve per time step. The problem with round-off error contaminating the closed form 
solution to the integrals introduced by equation (3) is also eliminated. However, as detailed 
below, we have been able to develop a new DSS formulation that, when coupled with a 
Galerkin-finite element discretization, generates a system matrix that can be solved with O ( N )  
operations per time step and therefore is competitive with a VS on a per node basis. The present 
paper describes the development of this new DSS formulation and provides results from 
characteristic tidal and wind-driven test problems using realistic, multilayered variations in E,. 

DEVELOPMENT OF VS AND DSS INTERNAL MODE EQUATIONS 

Using a general bottom- and surface-following ‘a’-co-ordinate system and assuming a hydro- 
static pressure distribution and a constant density fluid, the horizontal momentum equations 
are 

at; u - b aT,, a U  aU au dU 
- + u - + u - + w - - - f i = - g  X (  d t  dx 8y ax ~ p ,  an 

av  a u  au av at; 0 - b aTzy 
- + + - - + + - + + - + f u = - g -  +-----+m Y’ 
at dx ay a0 a Y  Hp,  au 

+ - -. + m  

where a and h are the values of a at  the free surface and bottom respectively,f is the Coriolis 
parameter, g is the acceleration due to gravity, H(x, y, t) = t; + h is the total water depth, 
h(x, y) is the bathymetric depth, tn, my(x, y, a ,  t) are the horizontal momentum diffusion terms, t is 
the time, u, v(x, y, a, c) are the mean velocity components in the x- and ydirections respectively, 
w(x, y, u, t) = da/dt is the vertical velocity in the ‘a’co-ordinate ~ y s t e m , ~ * ~ * ~  x and y are the 
horizontal co-ordinate directions, z is the vertical co-ordinate direction (positive upwards), 
t;(x, y, t )  is the free surface departure from the still water level, po is a constant reference density of 
water, a = b + [(a - b)/HJ(z + h) is the stretched vertical co-ordinate and T , ~  rzp(x, y, u, t) are 
the vertical shear stresses aligned in the x- and y-direction respectively. (Note that horizontal 
derivatives in equations (4a, b) are taken along constant ‘a’ surfaces. For completeness the 
horizontal momentum diffusion terms have been included in equations (4% b), although for 
compactness they have been represented in symbolic form. Specific expressions for these terms 
are readily a~a i lab le .~)  

Boundary conditions for equations (4a, b) are 

T,, = t,, and T , ~  = T , ~  at a = a, (54  

T,, = Tbx = pokub and T Z y  = ‘5by = pokub at 0 = b, (W 



298 R .  A. LUETTICH JR., S. HU AND J. J. WESTERINK 

where k is a slip coefficient, ub, vb(x, y, t) = u, D(x, y, a = b, t) are the components of the bottom 
slip velocity, T ~ ,  T ~ ~ ( X ,  y, t) = T,,, T,~(X, y,  o = b, t) are the components of the bottom stress and 
T,, T,~(X, y, t) E 7,,, rsy(x, y, a = a, t) are the components of the surface stress. A linear slip 
bottom boundary condition is obtained by keeping k in equation (5b) constant in time. A 
quadratic slip bottom boundary condition is obtained by setting k = k'(ut + ~ 2 ) " ~ .  where k' is 
constant in time, A no-slip bottom boundary condition is obtained when k = 00. 

The general eddy viscosity formulation in equation (1) is used to relate the vertical shear stress 
and the horizontal velocity. In sigma co-ordinates this gives 

A typical VS internal mode formulation is obtained by substituting equation (6) into equations 
(4% b) and (5a, b): 

aU a U  au au a[ a - b 2 a  
- + u - + u - + w - -  f v = - g - +  ~ (74 at ax ay aa ax ( H ) % ( E z $ ) + m x '  

= kUb and - = kv,. 

Equations (7a-d) can be solved for the dependent variables u and v provided that r,, and 
are specified and a[/ax and a[/ay are known from the external mode solution. 

Our new DSS internal mode formulation is obtained by first differentiating the horizontal 
momentum equations with respect to o and using the chain rule (this is illustrated for the 
x-momentum equation (4a) only): 

(8) 

Rewriting equation (6) as 

substituting these expressions into equation (8) and simplifying with the three-dimensional 
continuity equation gives 

HT, ,  aU ~ 7 , ~  a u  am, 
:o (E,(a - b)p,) + E,(a - b)p; ij - i,(a - b)po dy aa 

- + -. (10) W H T , ,  _ -  
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Using the expansions 

d H  
- .  

H 

equation (10) can be written as 

A similar manipulation of the y-momentum equation gives 

In equations (12a, b) A, and A, represent the non-linear advective terms: 

T,, av T Z y  au 

Once T,, and T,, are determined from equations (12a, b), velocity is obtained by integrating 
equation (6): 

Three boundary conditions are required to solve equations (12a, b) and (14). Two of these are 
obtained from equations (5a, b): 

T,, = T, ,  and T , ~  = T,, at 0 = a, (154 

u b  = ?bx/PO k and vb = Tby/p0 k at a = b. (15b) 

(It is clear from equation (15b) that a no-slip condition occurs when k = a). The third boundary 
condition is generated by requiring the depth-averaged velocity from the internal mode solution 
to match the depth-averaged velocity (S, 13) from the external mode solution. Averaging equation 
(14) over the depth and using equations (15a, b) gives 
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As was true in the DSS formulation of LW, if E, is assumed to vary with distance from a 
sheared boundary, the quotient T J E ,  in equations (14) and (15c) has a logarithmic singularity 
at the boundary. If these equations must be evaluated numerically, much of the anticipated 
benefit of a DSS approach will be lost. Therefore it is critical that a spatial discretization strategy 
is selected that allows these integrals to be evaluated in closed form. The simplest, physically 
realistic discretization is to assume that T, and E, are continuous, piecewise linear functions over 
the depth. This preserves the well-established variation in E, with distance from a boundaryl6-I9 
and suggests a finite element solution using linear basis functions for 1,. In this case the integrals 
in equations (14) and (15c) are particularly easy to evaluate in closed form. 

LINEAR, HARMONIC FORM OF THE INTERNAL MODE EQUATIONS 

Most three-dimensional circulation models discretize the external and internal mode equations 
in time using a time-marching method. However, in the subsequent sections of this paper we 
focus on the performance of the VS and DSS in tidally and wind-driven linear test cases for 
which analytical solutions can be found. To eliminate the possibility of time discretization errors 
entering into the numerical results, the VS and DSS internal mode equations are written in 
harmonic form by assuming that 

(16) 
where i = J( - 1) and x represents all time-varying quantities, i.e. surface elevation, velocity and 
shear stress. The equations are also linearized by assuming that the advective and horizontal 
momentum diffusion terms are negligible, i 4 h (therefore H z h), E, is not a function of time 
and either a linear slip or no-slip bottom boundary condition can be used. We note that by 
using a standard time discretization technique, allowing E, and H to vary in time and substituting 
equation (14) into equations (13a. b) for the advective terms, the DSS internal mode solution 
techniques presented herein can be extended to non-linear, aperiodic flows. It should also be 
possible to use the DSS approach for variable density flows as well. 

Using complex notation, the linearized, harmonic VS internal mode equations can be written 
as 

x(x, Y ,  t )  = x ( x ,  Y )  e'"', 

7: 7s - and - - -  E, 
a - b  

H H 

Similarly, the linearized, harmonic DSS internal mode equations can be written as 

(18a) 
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da. (181) 
H 

a - b j: 2, do  and U - ( o )  = U ;  + H 
U'(0)  = u,' + a - b J : i &  ~- 

In equations ( I  7) and (18) U ' = (u + iu)/2, U -  = (u - iu)/2, T: = ( T ~ ~  + T,- = ( T ~ ~  - i ~ , ~ ) / 2 .  
V '  =- t(d/dx + i a/ay), V -  = ga /ax  - i d/dy), the subscripts 'b' and 's' refer to bottom and 
surface values respectively and overbars indicate depth-averaged quantities. 

Multiplying both sides of equations (18a, b) by E ,  gives an alternative set of DSS equations: 

Equations (19a, b) have the form of diffusion equations for stress and provide an intuitive 
understanding of the physics that is represented in the DSS form of the internal mode equations. 
By neglecting the advective and horizontal diffusion terms in simplifying these equations, we 
are assuming that stress is diffused much more rapidly over the vertical than it  is transported 
horizontally. Although the analytical solutions to equations (18a, b) and (19a, b) are identical, 
the numerical solutions may not be (because E ,  can be a function of IT). In the results presented 
below, solutions to both equation sets are considered. For clarity, equations (18a. b) are called 
a DSS-1 formulation and equations (19a, b) are called a DSS-2 formulation. 

A significant convenience realized by writing the internal mode equations in complex form is 
that the form of the equations for U +  and r: is identical to the form of the equations for U -  
and r;. If V'c = V-5, the only difference between the solutions for U' ,  T: and U - ,  T ;  is that 
the former depend on o +f while the latter depend on o - f. In the following sections numerical 
and analytical solutions are only presented for U ', 5: (as functions of o +/ and Vt[), since 
these results are also valid for U ; ,  T ;  for a corresponding choice of o - f and V - c .  

SPATIAL DISCRETIZATION OF THE INTERNAL MODE EQUATIONS 

A Galerkin-finite element discretization is used over the vertical for both the VS and DSS 
internal mode equations. 

In the VS equations velocity is expanded as 

where 0 is the discrete approximation to U and 0, is the value of 0 at node n. The 4" are 
linear chapeau functions" and N is the total number of nodes over the vertical. Applying the 
Galerkin method to equation (17a) gives 
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where m = 1, 2,. . . , N. Integrating the vertical diffusion term by parts gives 

Substituting equations (20) and (22) into equation (21) and applying the surface and bottom 
boundary conditions, the spatially discretized VS internal mode equation can be written in final 
form: for m = 1 

= -gV" lba 41 ds, (23a) 

for 1 < M <  N 

and for m = N 

= -gV" J: 4 N  ds. (23c) 

Equations (23a-c) comprise a tridiagonal system of N equations for 0:. If this VS formulation 
is used to solve internal mode equations for u and u directly, the resulting system matrix is 
banded with bandwidth 6. 

In the DSS equations stress is expanded as 

where tZ is the discrete approximation to T, and tzn is the value of i, at node n. Applying the 
Galerkin method to equations (18a) and (19a) and expanding i: using equation (24) gives for 
DSS- 1 

and for DSS-2 

where m = 1, 2,. . . , N. Integrating the second-order derivative terms by parts gives 
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for equation (25) and 

for equation (26). When m = I and m = N, the terms on the right-hand side of equations (27) 
and (28) are equal. This yields the physically unreasonable result that the second-order derivative 
terms are equal to zero. However, when 1 < m < N, the first term on the right-hand side of 
equations (27) and (28) is zero. Therefore for 1 < m < N these equations can be substituted into 
equations (25) and (26) respectively to give for DSS-1, 1 < m < N 

and for DSS-2, 1 < m < N 

In both the DSS-1 and DSS-2 formulations the boundary conditions provide equations for 
m = 1 and m = N. Equation (18c) is used as the m = N equation 

$& = 5, (314 

and equations (18d, e) are combined to form the m = 1 equation 

Equations (29)-(31a, b) form two alternative systems of N linear equations for tzn. Equations 
(29) and (31a) or equations (30) and (31a) generate a tridiagonal system matrix for the DSS-1 
or DSS-2 formulation respectively. In addition, equation (31b) places non-zero entries in the 
first row of either the DSS-1 or DSS-2 system matrix. Therefore the storage and solution of the 
system matrix for either DSS formulation is comparable with that of a banded matrix with 
bandwidth 4. If either DSS formulation is used to solve internal mode equations for r,, and T~~ 

directly, the resulting system matrix is comparable with a banded matrix with bandwidth 8. 
To take advantage of this specific matrix form, we store only the banded part of the matrix 

and the additional row introduced by equation (31b). The matrix solution is accomplished using 
a standard banded matrix solver that we have modified to include operations on the additional 
row. 

After stress is determined, velocity is obtained by solving 

which is the discretized form of equation (180. We reemphasize the point that the integrals in 
equation (32) can readily be evaluated in closed form since E ,  and cp. are piecewise linear functions 
over the vertical. Also, the number of points and the specific location of the points over the 
vertical where the velocity is evaluated (using equation (32)) can be independent of the grid used 
to solve for stress. 
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Because both the VS and DSS formulations yield banded or nearly banded system matrices, 
the computational resources required to solve each scale linearly with the number of nodes in 
the vertical grid. However, when the same number of nodes is used in each solution, a VS should 
require about 25% less memory and CPU time than a DSS owing to its 25% smaller bandwidth. 
The integrals in equations (31b) and (32) add a small amount of additional overhead to a DSS; 
our experience has shown that a VS actually requires about 30% less CPU time than a DSS 
when the same number of nodes is used in each. 

RESULTS FROM A TIDAL FLOW TEST PROBLEM 

The behaviour of the internal mode formulations is first examined in a simulated tidal flow by 
considering a water body of infinite horizontal extent forced by a specified, periodic free surface 
gradient. A realistic bottom boundary layer is produced by using a no-slip condition at the 
bottom together with an eddy viscosity that varies linearly over the lower 20% of the water 
column and remains constant over the remainder of the depth:16*” 

where K = 0.4 is the von Karman constant, Z0b is the effective bottom roughness and U * b  is the 
bottom friction velocity defined as 

U*h d(lrbl/PO). (34) 

Analytical solutions for this general class of problems (although with different eddy viscosity 
distributions) have been presented in the l i terat~re . ’~-’~ The analytical solution for a water 
column forced by either a specified free surface gradient or a specified surface stress assuming 
an eddy viscosity that consists of up to three continuous linear segments over the vertical is 
summarized in the Appendix. Since E ,  is dependent on u * b  (and therefore rb), it cannot be 
specified a priori. Rather, iteration is used until the friction velocity obtained by substituting the 
analytical solution for t b  into equation (34) matches the value used in equations (33a, b). 

Prior to examining the numerical solutions, it is useful to consider the characteristics of the 
analytical solution to this test problem. Figure 1 presents the nondimensional ratio of the 
bottom stress to the surface gradient forcing as a function of the dimensionless forcing frequency 
Cl; = h(o + f)/u*b, and the dimensionless bottom roughness zodh. At low frequency a close 
balance exists between the bottom stress and the surface gradient forcing (boundary layer flow). 
Conversely, at high frequency the bottom stress becomes unimportant in the overall force balance 
and the driving force is balanced by the inertial force (quasi-geostropic flow). At intermediate 
frequency both the bottom stress and the inertial force are effective in balancing the surface 
gradient. The importance of bottom stress increases weakly with zodh. 

At low frequency or when U + is small, the governing internal mode equation (equation (17a)) 
reduces to 

a - b a  t: 
-- - (- ) x gv+l[. 
H da po 

(35) 
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Figure I .  Dimensionless bottom stress as a function of dimensionkss frequency and bottom roughness from the 

analytical solution to the tidal test problem 

In these cases r: is approximately linear with depth because gV' C is not a function of depth. 
Figure 2 shows the vertical distribution of non-dimensional velocity and stress (amplitude and 
phase) from the analytical solution for the three dimensionless frequencies S2: = 0.1, 1 and 10 
using rodh = lo-*. These frequencies span the range from boundary layer flow to quasi- 
geostropic flow. At low frequency (S2: < 01) the frictional effects of the bottom boundary layer 
penetrate the entire water column. The velocity profile is sharply curved near the bottom and 
some curvature persists up to the free surface. The stress profile is nearly linear over the total 
depth. At high frequency (a' 2 10) the thickness of the bottom boundary layer is only a fraction 
of the total depth. The velocity profile is again sharply curved near the bottom, although above 
the bottom boundary layer the flow is quasi-geostropic as evidenced by zero stress and a constant 
vertical profile of velocity. The stress profile is linear only near the bottom where U +  + 0. Near 
the top of the boundary layer the transition from frictional to irrotational flow introduces 
curvature into the stress profile and a characteristic 'bulge' into the velocity amplitude profile. 
The transition from low to high frequency (Gt x 1) is characterized by the gradual development 
of curvature in the stress profile as the boundary layer is restricted to a fraction of the total depth. 

The stress profiles shown in Figure 2 suggest that for fJ,+ x 1 or less a highly accurate 
numerical solution should be possible using a DSS with relatively few evenly spaced nodes over 
the depth. For Q: x 10 or greater accurate DSS results should require either a larger number 
of evenly spaced nodes or a non-uniform node arrangement over the depth. The velocity profiles 
shown in Figure 2 indicate that for all a VS formulation will require considerable resolution in 
approximately the lower 10% of the water column. We note that a typical semidiurnal tidal 
flow on the continental shelf (w = 1.4 x lo-* s- I ,  f TZ 1 x lo-* s- ', h x SO m, Ueb x 1 cm s- ') 
falls in the range of Ql x 1 where a DSS would be attractive. 

Comparisons are presented between the analytical solution and the VS, DSS-1 and DSS-2 
numerical solutions. The VS numerical solutions were forced by a specified free surface gradient 
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Figure 2. Vertical profiles of velocity and shear stress from the analytical solution to the tidal test problem 

while the DSS numerical solutions were forced by the depth-averaged velocity that was obtained 
from the analytical solution for the specified free surface gradient. In each case U*b from the 
analytical solution was used to specify the eddy viscosity. To provide as critical a test as possible, 
the DSS results were computed using a uniform grid over the vertical while the VS results were 
computed using a non-uniform grid over the vertical. For a no-slip bottom boundary condition 
the analytical solution for velocity approaches a logarithmic distribution as u -+ b: 

K 

Defining a new vertical co-ordinate S as 

allows U +  to be written as a linear function of S near the bottom. DaviesZ4 converted VS 
momentum equations into an S-co-ordinate system similar to the one defined by equation (37) 
and solved the resulting equations using a uniform 'S-grid' over the vertical. For the present 
study equation (37) was rewritten to provide an expression for the a-spacing that corresponds 
to a uniform S-spacing: 

(n - 1)AS + ZOb 
U, = b + (a - b) f_Ob [ - I]. 

h 
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In equation (38) n = 1, 2,. ... N is the node number and AS = 1/(N - 1). Equation (38) was 
used to generate a non-uniform grid for the VS computations. We note that the non-uniform 
a-grid generated by equation (38) is optimized for this test problem and would be somewhat 
impractical for use in an actual three-dimensional model because a different a-spacing would 
be required at each horizontal location where zOdh varied. 

Our initial assessment of the DSS and VS performances is based on the error in the computed 
bottom stress. Figures 3 and 4 present the normalized amplitude error and the phase error for 
the DSS-1, DSS-2 and VS numerical solutions as functions of the number of nodes used over 
the vertical for zodh = As expected, when a uniform grid is used, the efficiency 
of the DSS methods is best for moderate to low frequency (i.e. f'l; < 1) and becomes rather 
poor at high frequency (i.e. Cl: 2 10). Figures 3(a)-3(d) and 4(a)-4(d) indicate that bottom 
roughness has little effect on the DSS results. Conversely, the VS results are nearly independent 
of frequency because the shape of the velocity profile in the sharply curved part near the bottom 
is not a function of frequency (e.g. equation (36)). The shape of the velocity profile is dependent 
on the roughness, however, and the VS becomes less accurate as the dimensionless roughness 
decreases. (Compare Figures 3(e) and 3(f) with Figures 4(e) and 4(f)). The VS bottom stress 

and 

loo  

lo-' - 
I- 

- 
lo-' 

El (4 - - - - - - - -  .... ... 

... 
..._ .... 

1 

1 - 
+a 
I- l l <  1 

:< - 
1 

1 
- - - -  

l o  
number of nodes number of nodes 

Figure 3. Convergence of bottom stress for the DSS-I, DSS-2 and VS numerical solutions to the tidal test problem for 
dimensionless bottom roughness z,dh = 



308 R. A. LUETTICH JR, S. HU A N D  J. J. WESlZRlNK 

loo I 1 
(c) - - - - - - _ _ _ _  055-2 

.... I 

-k 

------------ 
*......,. _I *.... .., .. 

----n;=io.o 
10 

number of nodes 

Figure 4. Convergence of bottom stms for the DSS-I, DSS-2 and VS numerical solutions to the tidal test probkm for 
dimensionless bottom roughness todh = to-' 

number of n z e r  

amplitude has a second-order convergence while the phase convergence is somewhat faster. (A 
second-order convergence of bottom stress amplitude was also found for a VS on a uniform 
grid of linear finite elements when the eddy viscosity was kept constant over the vertical.') The 
DSS-1 method has approximately second-order convergence for amplitude for 0: < 1. The 
convergence rate decreases at higher frequencies and is generally poorer for phase than for 
amplitude. Both the rate of convergence and the absolute convergence for a given number of 
nodes are worse for the DSS-2 formulation than for the DSS-1 formulation. 

Table I quantifies these results further by presenting the number of nodes required by each 
numerical solution to reach an amplitude error of 1% in bottom stress. For all frequencies and 
roughnesses the DSS-1 results were consistently as good as or better than the DSS-2 results. 
Since there is minimal difference in the CPU time or memory requirement between the two DSS 
formulations, the DSS-2 approach has been dropped from further consideration. For moderate 
to low frequencies the DSS-1 numerical solution requires considerably fewer uniformly spaced 
grid points to achieve the same level of accuracy as the VS numerical solution using the optimized 
non-uniform a-grid. 

Since the vertical profile of velocity is often the primary quantity desired from the internal 
mode solution, the vertical profiles of velocity from the DSS-1 and VS numerical solutions have 
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Tabk I. Bottom stress convergence summary for the tidal test 
problem 

Number of nodes for error < 1 % 

n,+ zodh DSS- 1 DSS-2 vs 
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Figure 5. Convergence of the vertical profiles of velocity obtained from the DSSl numerical solution to the tidal test 
problem. For display purposes the velocity profile was evaluated at 21 evenly spaced locations over the vertical 
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Figure 6. Convergence of the vertical profiles of velocity obtained from the VS numerical solution to the tidal test 
problem. For display purposes the velocity profile was interpolated at 21 evenly spaced locations over the vertical 

been plotted in Figures 5 and 6 respectively. These figures illustrate the high accuracy of the 
DSS numerical solution for low to moderate frequencies and generally confirm the comparative 
performance of the DSS and VS numerical solutions indicated by the bottom stress analyses. 

RESULTS FROM A WIND-DRIVEN TEST PROBLEM 

The behaviour of the internal mode formulations is examined further in a simulated wind-driven 
flow by considering a water body of infinite horizontal extent forced by a specified, periodic free 
surface stress. While a periodic surface stress rarely exists in practical flows, this test problem 
still provides useful insight to the characteristic behaviour of the internal mode solution in 
wind-driven flows. Realistic surface and bottom boundary layers are produced by using a no-slip 
condition at the bottom together with an eddy viscosity distribution that increases linearly with 
distance from the free surface and bottom bo~ndaries. '**'~ In analogy with the tidal problem, 
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it is assumed that the linear eddy viscosity segments that terminate at the free surface and at 
the bottom each occupy 20% of the depth, i.e. 

E,  = ~hU,~rf + a - - 6  -) for a - 02(a - b) < u < a, 

a - b  (394 

where zos is the effective roughness of the free surface and U,, is the surface friction velocity 
defined as 

u,, = J(lr,l/lJo). (40) 

The eddy viscosity in the remaining 60% of the water column is assumed to vary linearly and 
to connect the segments described in equations (39% b). The result is a continuous, piecewise 
linear distribution (containing three linear segments) of eddy viscosity over the depth. 

The analytical solution summarized in the Appendix also applies to the wind-driven problem. 
In this case U,, is known (from the specified surface stress forcing); however, it is again necessary 
to iterate until the analytical solution for Tb gives a value of U + b  that matches the value used 
in the eddy viscosity distribution. 

The non-dimensional ratio of the bottom stress to the applied free surface stress as a function 
of the dimensionless forcing frequency (a' = h(w + f ) /U, . )  and the dimensionless roughnesses 
(zo& z,Jh) obtained from the analytical solution is presented in Figure 7. At low frequency a 
close balance exists between the bottom stress and the surface stress. Similar to the tidal test 
case, at high frequency the bottom stress becomes unimportant in the overall force balance and 
the driving force is balanced by the inertial force. At intermediate frequency both the bottom 
stress and the inertial force balance the surface stress. The importance of bottom stress increases 
with zodh but is quite insensitive to zoJh. We note that we were only able to get the analytical 
solution to converge for a limited range of a' (i.e. as shown in Figure 7). We believe that this 
was due to round-off error in the Kelvin function routines (IMSL) used in the analytical solution. 

The vertical distribution of non-dimensional velocity and stress (amplitude and phase) 
obtained from the analytical solution for the three dimensionless frequencies Q' = 0.01,Ol and 
0.4 using zo,/h = is presented in Figure 8. These frequencies span the 
range of force balances described above. In each case the velocity profiles are sharply curved 
near the bottom and free surface boundaries. At low frequency or when U +  is small, the 
governing internal mode equation (equation (1 7a)) reduces to 

and z,Jh = 

-("*)%O. a 
8-6 Po 

Equation (41) indicates that for these cases 7: is approximately independent of depth. Figure 8 
shows that at low frequency the stress is essentially constant through the water column. At 
higher frequencies the bottom stress decreases, the stress is constant only near the bottom where 
U' + 0 and the stress profile curves as it varies from a non-zero surface value to a constant 
value in the lower part of the water column. 

The vertical stress profiles shown in Figure 8 suggest an efficient numerical solution should 
be possible using a DSS with evenly spaced nodes, at least for Q' 6 0.4. At substantially higher 
frequencies the increased curvature in the stress profile means that a DSS will require either a 
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from the analytical solution to the wind-driven test problem 
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Figure 8. Vertical profiles of velocity and shear stress from the analytical solution to the wind-driven test problem 
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large number of evenly spaced nodes or a non-uniform node arrangement over the depth, as 
was true in the tidal test case. In fact, at high frequency the effects of the surface stress do not 
reach the bottom and only a surface boundary layer forms. At this point the wind-driven problem 
behaves much like the tidal test problem turned upside down. The velocity profiles in Figure 8 
suggest that for all Q' a VS formulation will require considerable resolution near both the 
surface and bottom boundaries. For reference, a 10m s- l  wind (U*, x 1 cm s-l) with a 12 h 
period at mid-latitude (f z 1 x 

In the comparisons made between the VS and DSS-1 numerical solutions, the VS was forced 
by the specified free surface stress while the DSS-1 was forced by the specified free surface stress 
and the depth-averaged velocity that was obtained from the analytical solution. U*b from the 
analytical solution along with the specified U,, was used to evaluate the eddy viscosity. The 
DSS-1 was computed using a uniform a-grid over the vertical. The VS was computed 
using a non-uniform a-grid that was compressed near both the free surface and the bottom using 
an analogous form of equation (38). As noted for the tidal test case, this optimal a-spacing would 
not be practical for use in an actual three-dimensional model owing to spatial and/or temporal 
variations in zoJh and z,& 

Figure 9 presents the non-dimensional bottom stress as a function of the number of nodes 
used in the solution for the VS and the DSS-1. Similarly to the tidal test case, at low frequency 
(i.e. Q' < 0.1) a highly accurate solution is obtained from the DSS-1 with two to four nodes 
over the depth. In this frequency range the VS requires roughly 10 times as many nodes to give 
the same accuracy. For Q' = 0.4 the VS requires about twice as many nodes as with the DSS-1 
for comparable accuracy. As was true in the tidal problem, we expect that at high frequency a 
VS on a non-uniform grid will give better results than a DSS on a uniform grid for the same 
number of nodes. While the bottom stress comparison is presented only for the case zodh = lo-' 
and z,Jh = lo-', a VS for wind-driven flows becomes less accurate as the roughness decreases 
(as was true for the tidal problem). Both the DSS and the VS have a second-order convergence 
rate (Figure 9). (Note that because the absolute value of the phase error is plotted in Figure 9, 

in 20 m water depth would have Q' x 0.5. 
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Figure 9. Convergence of bottom stress amplitude and phase for the DSS-1 and VS numerical solutions to the 
winddriven test problem for dimensionkss roughnases roJh = lo-' and zoJh = lo-' 
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Figure 10. Convergence of the vertical profile of velocity obtained from the DSSl numerical solution to the winddriven 
test problem, For display purposes the velocity profile was evaluated at 21 evenly spaad locations over the vertical 

a large dip occurs in the VS plot for %+ = 0.4 when the phase error changes from positive to 
negative.) 

Vertical profiles of velocity obtained from the DSS are shown in Figure 10. Nearly exact 
results are obtained with two, five and 11 nodes over the vertical for f?,’ = 0.01, 0.1 and 0.4 
respectively. Because the surface stress is specified as a boundary condition and the vertical 
stress profile is nearly linear near the free surface, the velocity profile near the surface is quite 
accurate for all frequencies when only two to four nodes are used over the vertical. This suggests 
that the DSS technique may be particularly useful for modelling near-surface currents in 
wind-driven flows, even at high frequency. 

CONCLUSIONS 

Since velocity varies rapidly near a sheared boundary, in many practical fluid problems it can 
be inefficient to solve discrete equations with velocity as the dependent variable. Conversely, 
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shear stress varies slowly near a sheared boundary, suggesting that it may well be suited for use 
as the dependent variable in discrete equations. 

Luettich and Westerink” (LW) proposed a direct stress solution (DSS) technique that allowed 
shear stress to be used as the dependent variable in the internal mode solution of a three- 
dimensional hydrodynamic model. In the present paper we describe a major improvement to 
the earlier DSS technique. The new formulation, coupled with a spatial discretization using 
linear finite elements, replaces the fully populated system matrix of LW (approximately N 3  
operations per time step) with a system matrix that requires comparable computational resources 
to store and solve as a banded matrix with bandwidth 8 (approximately N operations per time 
step). The most efficient velocity-based solutions (VS) generate banded system matrices with 
bandwidth 6. For the same number of nodes over the vertical a VS requires only about 30% 
less CPU time than a DSS (including extracting the velocity profile from the stress profile). If 
the eddy viscosity distribution is assumed to be piecewise linear over the depth (with an arbitrary 
number of time-varying segments), the conversion from stress to velocity, equation (32). can be 
done easily in closed form, thereby avoiding any difficulty resulting from the logarithmic 
singularity in the velocity profile that occurs at the boundary. The new DSS formulation also 
eliminates the problem with round-off error that was encountered when the LW formulation 
was used with more than five or six Legendre polynomials and more than two or three eddy 
viscosity segments. 

The complete DSS formulation is presented for barotropic internal mode equations that have 
been simplified by neglecting non-linear terms and by assuming a harmonic solution in time. 
However, straightforward extensions can be made to obtain a transient, fully non-linear, 
threedimensional numerical model using the DSS approach. It should also be possible to use 
a DSS formulation in stratified flows if this seems desirable. 

Tidal and winddriven test problems with realistic boundary layers were used to compare two 
variations of the new DSS formulation with a standard VS formulation. In both problems the 
DSS numerical solutions were obtained using a uniform grid over the vertical while the VS 
numerical solutions were obtained using a non-uniform grid (compressed near the bottom in 
the tidal problem and compressed near the surface and the bottom in the wind-driven problem). 
The non-uniform grids were optimized for logarithmic velocity profiles near the boundaries with 
specified z,Jh and zOJh. 

For the tidal test problem the DSS-1 formulation was found to give more accurate results 
than the DSS-2 formulation for all cases considered. The efficiency of a DSS is dependent on 
the dimensionless forcing frequency f i b  = (0 k f)h/U,,. For fib Q 1 (approximately) the bottom 
boundary layer penetrates the entire water column, the stress profile is relatively linear and the 
VS requires three to five times more nodes for the same accuracy as the DSS-I. For R, 2 10 
the bottom boundary layer is limited to only a fraction of the water column, significant curvature 
exists in the stress profile and the VS on a non-uniform grid is more efficient than a DSS on a 
uniform grid. We note that a DSS is particularly accurate and efficient at frequencies where the 
bottom stress is important in the depth-integrated force balance. The accuracy of the VS is 
independent of Rb in the range tested, although it is dependent on zodh. The convergence rates 
for bottom stress for both the VS and DSS formulations are of second order. 

For the wind-driven test problem the efficiency of a DSS is dependent on the dimensionless 
forcing frequency Q = (o f f )h /U , , .  For Q Q 1 (approximately) the surface boundary layer 
penetrates the entire water column, the stress profile is relatively linear and the VS again requires 
considerably more nodes for the same accuracy as a DSS. We were unable to obtain an analytical 
solution at higher values of Q and therefore could not directly test the numerical technique in 
this range. However, for higher Q, the surface boundary layer becomes isolated in the upper 



316 R. A. LUETTICH JR, S. HU AND J. J. WESTERINK 

fraction of the water column, no bottom boundary layer develops and the winddriven problem 
behaves much like an upsidedown tidal problem, except that the stress at the free surface 
boundary is specified. Since the stress profile remains linear near this boundary, a DSS numerical 
solution remains accurate and efficient in the surface region. The convergence rates for bottom 
stress for both the VS and DSS-1 formulations are again of second order. 

From a practical threedimensional modelling perspective the use of a uniform a-grid over 
the vertical will be preferable to the use of a non-uniform a-grid over the vertical if the latter 
must be Optimized so that the a-interval is a function of local variables such as h, zOb and z,,, (e.g 
equation (38)). Since all the VS results presented above were computed on optimized, non- 
uniform a-grids, the relative performances of the DSS and VS approaches that have been 
presented are valid only for these grids. However, the performance of a VS will clearly be 
diminished if a non-optimized a-grid is used over the vertical, (i.e. a grid that has the same 
a-spacing at all horizontal locations regardless of local variables). 

Finally, it should be noted that in contrast with the test cases presented above, many 
threedimensional hydrodynamic models do not explicitly resolve the boundary layers. Rather, 
they parametrize the bottom boundary layer using a slip condition and thereby avoid resolving 
this high-velocity-gradient region. Often the free surface boundary layer simply remains un- 
resolved. Using these simplifications, a VS can usually be obtained on a uniform grid using as 
few or fewer nodes over the vertical than a DSS." Therefore the main advantage of a DSS 
model occurs in flows dominated by the boundary layer(s) (i.e. small Q and/or Q or when 
resolving the flow near the boundary is of particular interest. 
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APPENDIX: SUMMARY OF ANALYTICAL SOLUTION 

In this appendix we briefly summarize the analytical solution to the linear, harmonic form of 
the internal mode equations for an eddy viscosity that consists of up to three continuous segments 
through the water column. Specifically, we solve the 0 +f part of the complex internal mode 
equations ( 17% b), 

i(O + f )U+ = -gv+c  + (", - ; (4 Z) 
with boundary conditions 

a - b  au+ t: 

H aa Po 
- - E x - -  - at a = a, 

and eddy viscosity distribution 
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where 

+(b) + Ii(0 - b), b 6 Q 6 0 1 ,  

+(a) = +(a,) + I Z ( 0  - 011,  0 1  < 0 6 6 2 ,  (44b) i &(az) + 13(a - u2), u2 6 u < a. 

In equations (44a, b) l/I, is a slope constant for layer j and u, is the upper limit of layer j. 
The solution to equations ( 4 2 H 4 4 )  can be written as 

ciBi(0) + c Z K ~ ( O ) ,  b 6 CJ < 01, 

U'(a) = U,+ + c ~ B ~ ( u )  + ~4K2(6), 01 6 u d ~ z ,  (45) i c,B,(o) + c6K3(a), u2 6 o < a, 

where CJ; = ig /2 (0  +f), Bja) and KXo) are basic solution functions for layer j ,  and c1 to c6 

are constants. If 1, = 0 in equation (44b), B,@) and Kjo) are exponentials: 

for 1, = 0, 

where uo = b. If I, # 0 in equation (44b), BAIT) and Kja)  are zeroth-order Kelvin functions: 

The constants c1 to c6 are determined from the surface and bottom boundary conditions and 
by requiring the velocity and stress to be continuous at o1 and u2. Evaluating these constants 
gives the velocity solution in final form 

where 

P l ( 4  = 
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In equations (48)-(51) primes denote derivatives with respect to a. 

equation (1) of the text) gives an expression for the shear stress: 
Substituting equation (47) into the general relationship between shear stress and velocity (i.e. 
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